Phylogeny

Term invented by Ernst Haeckel in 1866 in order to define the relationship between animal and plant species across time

Darwin (1872) a phylogeny is the genealogical relationships between all organisms

From Lamarck 1809

From Darwin's notebooks

Goals of phylogenetic reconstruction

- Try to explain the evolutionary history of actual characters (morphological traits, genes)
- Show how species are relating to one another
- A phylogenetic tree is a mathematical structure used to model the evolutionary history of a trait

Phenetic - Cladistic

- Phenetic: classification of the organisms based on their similarities, trees obtained using a phenetic approach may not reflect evolutionary relationships. A tree based on this method is called a phenogram
- Cladistic (Hennig 1966): study of the different pathways of evolution, the most parsimonious pathway will be retained to build the best possible tree called a cladogram.

Morphological characters

- Morphological
 - easy to access
 - can be influenced by external factors
 - ambiguous
 - qualitative argumentation
 - codification of the characters
 - homology difficult to assess
 - relationship between closely related species
 - sometimes visible morphology can be lacking

Molecular characters

- Molecular
 - heritable
 - only 4 or 20 character states per site (relatively unambiguous)
 - no obvious polarity in their evolution
 - predictable evolution
 - large number of characters (about 17,000 bp in human mitochondrial DNA)
 - independent characters (probably not but better than morphological characters)

Molecular characters

- Molecular
 - homology can be inferred without bias
 - large body of knowledge (and still accumulating) about how the characters change evolutionarily
 - sequences are know to evolve at different rate
 - rRNA
 - histones
 - immunoglobulin genes
 - animal mtDNA
 - micro/minisatellites

changes very slowly

changes very slowly

- changes quickly
- changes quickly
- changes very quickly
- relationship with distantly related species can be inferred
- easily generated (PCR)

Definitions

- Homology
- Analogy
- Homoplasy
- Convergence
- Reversion
- Orthology / Paralogy
- Character classification

- Similarity: resemblance between two characters
- Analogy: similar in form or function without sharing an ancestry
- **Homology:** Two traits are homologous if they are derived (with or without modifications) from a common ancestor.

• Homoplasy: independent presence of similar characters between species

Homoplasy

- **Convergence:** process whereby non related organisms are evolving similar traits independently due to similar environmental pressures for example.
- **Reversion:** return of a character to one of its ancestral states
- **Parallelism:** identical changes in two or more lineages.

- Homologous traits or sequences can be:
 - orthologs homologous sequences are orthologous if they are separated by a speciation event
 - paralogs homology by duplication
 - xenologs homology through lateral gene transfer

- **Plesiomorphy:** primitive or ancestral character state
 - Primates all have hair.
 - Can we cluster primates as a group based on this characteristic?
- Apomorphy: derived state representing an evolutionary novelty
 - Humans are bipedal.
 - Can we phylogenetically place humans based on this characteristic?

- **Symplesiomorphy:** primitive state shared by several taxa
 - Hair is a shared primitive state for all primates
- Autapomorphy: derived character state unique to a taxa
 - Humans are uniquely bipedal among primates

- **Synapomorphy:** derived character state shared by several taxa
 - only these can be used to decipher relationships

Some vocabulary

Some vocabulary

Some vocabulary

Operational Taxonomic Unit (OTU)

Additive branch length

Sum of the branch lengths between 2 OTUs

$$D_{AC} = d_1 + d_2 + d_3$$

Ultrametric branch lengths

When the distances from any two leaves to their shared common ancestor are equal (as shown here).

Bifurcation / Multifurcation

Monophyletic / Paraphyletic

- in the first diagram A and B are **monophyletic groups**; all taxa share a common ancestor and all descendants of that ancestor are members of the group.

- in the second diagram, B is a **paraphyletic group**; all taxa share a common ancestor but not all descendants of that ancestor are members of the group.

Monophyletic / Paraphyletic

- in the first diagram A and B are **monophyletic groups**; all taxa share a common ancestor and all descendants of that ancestor are members of the group.

- in the second diagram, B is a **paraphyletic group;** all taxa share a common ancestor but not all descendants of that ancestor are members of the group.

Outgroup

Outgroup: sequences related to the group of sequences compared but not part of this group

Unrooted tree

Unrooted tree

Unrooted tree

From Haerty et al. 2005. Mol. Ecol. 14:3801-3807

- In a rooted tree a single node is designated as a common ancestor giving thereby a unique pathway is connecting this node to any other through evolutionary time
- An **unrooted tree** is only displaying the relationship between the nodes, no information about directionality is given.

Number of nodes

Rooted tree

 $N = (2n-3)! / [2^{n-2}(n-2)!]$

Unrooted tree

 $N = (2n-5)! / [2^{n-3}(n-3)!]$

n: number of species

For a rooted tree n= 15 N= 213,458,046,676,875

n=20 N= 8,200,794,532,637,891,559,375

Branch lengths

These two trees give different information about the species/genes splits

Gene tree - Species tree

1-e -T/2N

(1/3)e^{-T/2N}

(2/3)e^{-T/2N} From Nei 1987

	1-e ^{-T/2N}	(1/3)e ^{-T/2N}	(2/3)e ^{-T/2N}
T = 5.0(2N)	0.993	0.002	0.004
T = 2.0(2N)	0.865	0.045	0.090
T = 1.0(2N)	0.632	0.123	0.245
T = 0.5(2N)	0.393	0.202	0.404
T = 0.1(2N)	0.095	0.302	0.603

Incomplete lineage sorting

From Nei 1987